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DENUMERABLE STATE MARKOVIAN DECISION PROCESSES--AVERAGE

COST CRITERION
by

Cyrus Derman

1. Introduction

We are concerned with the optimal cohtrol of certain types of

dynamic systems. We assume such a system is observed periodically at

times t =0, 1, 2, ... . After each observation the system is classified !

into one of a possible number of states. Let I denote the space of

possible states. We assume I +to be denumerable. After each classifi-

cation one of a possible number of decisions is made. Let K, denote

i

the number of possible decisions when the system is in state i, 1i ¢ I.

The decisions interact with the chance enviromment in the evolutioun of

the system.

Let {Yt) and [At), t =0, 1, eoo y

denote the sequences of -

states and decisions. A basic assumption concerning the type of systems

under consideration is that

P(Y,,q = ,jIYo, By eoe s Y =14, 8

+ = k} = qij(k) »

for every i, Jj, k and t; i.e., the transition probabilities from

one state to another are functions only of the last obseérved state and

the subsequently made decision. It is assumed that the qij(k)‘s are

known.
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A rule or policy R for controlling the system is a set of func-

tions {Dk(Yo, By wee s Yt)] satisfying
ong(Yo, By vee s Yt) <1,

for every k, and

K

i
> D(Y,A, . , Y =1i) =1,
k=1 k*70" o t

for every history Y , A, ..., Y, (t=0,1, ... ). As part of a
controlling rule, Dk(Yb’ Dy veny Y£) is the instruction at time t
to make decision k with probability Dk(Yo, By een s Yt) if the
particular history Yo’ Ab’ oo g Yt has occurred. We remark that
although we have assumed a kind of Markovian property regarding the
behavior of the system, the process [Yi], or even the joint process
[Y%, A%], is not necessarily a Markov process; for a rule may or may not
depend upon the complete history of the system.

We further assume that there is a known cost (or expected cost)

w incurred each time the system is in state 1 and decision k 1is

ik
made. Thus, we can define a sequence of random variables (Wt],
t=0, 1’ 2, X by W‘t=wik if Yt=i’ At=k’ t=o, l’ see o
For a given Yo =1 and rule R we can talk about Eth’ provided it

exists., Let

Qp,r(1) = 71'—&"'1'

T
tég Eth s when Yb =1;

e,

Yoo ®

A‘V .
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thus, QT R(i) is the expected average cost per unit time up to time
3

period T. Let QR(i) = lim Q; R(1), if the limit exists; otherwise,
)

T

let QR(i) = T}}g sup QT,R(i),

In this paper we are concerned with the problem of finding an
optimal rule R; explicitly, a rule R, for a given i, which minimizes
QR(i) over all possible rules.

» It is convenient to consider sub-classes of the class of all possi-
ble rules. Let C denote the entire class of rules. Let C' denote
the sub=class of stationary Markovian rules; i.e., a rule R is a
member of C' if Dk(Yb, By eeo 5 Y, = i) = D, » independent of

Ab’ coo g A%-l and t. A rule R e C' 1is completely defined by

the set of numbers {D

k=l, aoa’K ieI,' ioen,afixed

ik} 2

randomized decision-making procedure is associated with each state. Let

i)

C" denote the sub-class of C' for which D =0 or 1. The rules
in C" are stationary Markovian, but non-randomized.
We point out that if R € C', the resulting stochastic process {Yf},
t=0,1, .o. , 1s a Markov chain with transition probabilities
Ki
Pyy = kgl Dyydys(X) » (1, 3 e T) .

If the state space I 1s finite it is known (see Gillette [8] and
Derman [5]) that QR(i) can be minimized over C by a rule R ¢ C".
Computing methods using dynamic programming (Blackwell [1], Howard [9])
or linear programming (Manne [12]) exist for obtaining solutions.

For I infinite, and specifically denumerable, little has been

published regarding existence and the nature of optimal rules. Iglehart

3
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[L0}] and Taylor [14] have considered the average cost criterion for the
specia; cases of inventory and repiacement systems allowing for an
infinite state space. Blackwell [21, [3], Derman (6], Maitra [11],
Strauch | L3] have considered infinite state spaces in dealing with s
discounted cost criterion (Blackwell and Strauch also consider a total
expected cost criterion).

‘Of some related interest is the result (Blackwell [3] and Derman
[6]1) tha* for a discounted cost criterion (discount factor strictly less

than one) axd K1 <o, 1 eI, and (w bounded, an optimal rule

ik}
always exists and is & member of C". If either condition is violated,
an optimal rule may not exist. A specific question then arises: Under
the same conditions, does an optimal ’rule always exist for the average
cost criterion, and, if it does, is there always an optimal rule in C"?
In SECt%QP_g we present counterexamples showing that this is not the
case. One example shows that no optimal solution exists; another, that
an optimal solution exists but is not a member of (C"--it is a member

—

of C' -~ C. In the remaining sections we are concerned with obtaining
conditions under which a rule in C" 1s optimsl and for the convergence
of an infinite state version of the policy improvement (Howard [9])

computational procedure to the optimal rule.

2. Counterexamples

The first example, due to Maitra [11], shows that under the
assumptions

(A)K<m,i€1

i

R Y

] LR | ‘m-v-l [ ': ¢ :
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and
(B) {wik) is a bounded set of numbers,
an optimal rule need not exist.
Let 1 consist of the states O, 0, 1, 1', ... . Suppose
Ki =2, 1=0,1, 2, .c. and Ki =1, 1=0', 1', 2, ... vwhere
(1) =1,

]

(2) = l, and qi?i'(l) l fOr i = O, ;1, P

9,1

Assume Vik = 1 for 1i=0,1, ... and k =1, 2;

i-= O, ly 000 Where [W

93 4+1

Wi =Wy for

1] is a decreasing sequence of positive real

numbers converging to zero. In words, the system, when in state 1,

either proceeds to state i+l or 1' depending on the decision made;

the cost is one unit. When the system is in state 1i', it remains there }

at a cost of w, units per time period.

i

Assume Yo = 0. Without entering into the details it is clear that
we can choose an R such that QR(O) is as close to zero as desired.
However, any rule R for which there is some positive probability that
decision 2 will be made at some state 1 yields a positive expected
average cost. On the other hand, the rule R prescribing decision 1
at all states has QR(O) = 1. Thus, no rule can achieve a zero expected
average cost and, consequently, no optimal rule exists.

The second counterexample shows that, even under conditions (A) and
(B), an optimal rule need not be a member of C". By resorting to a
randomized stationary Markovian rule one can do better than remaining in ~
the class of deterministic stationary Markovian rules.

Let I De the state space consisting of the non-negative integers.
Suppose K =1, K, =2, 1=1,2, ..., with qoo(l) = 0,

qoi(l) =gi>0, i=1, 2, see 3 qii(l) =1’ (2) =l, i=l, 2’000.

Q'

5




Let w, =w i=0, 1, ... where (w is a decreasing of positive

ik i’

real numbers converging to zero. Thus, the system, when in state O,

1}

progresses to state 1 with probabi.ity 84 > 0; when in state 1 # o,
it either remains in state i (if decision L is made) or it reverts to
state O (if decision 2 is made). The further the system is away from
state O (i.e., the larger the value of i) the iess the cost.

Assume Yb = 0. Let R be any rule in C"; let S; be the set

of states for which D 1. If 1 e SR’ then Y£ =1 implies 1 , =

i1 T

for all t! > t; 1f 1 ¢ Sg» then Y, =1 implies Y . = O. Suppose

SR is non-empty; then it can be shown that

(0) = >0 .
w9 {5, e /L uf

If S, 1is empty, then

R

[+ ]
| Vo F i{i 84¥y
Qﬁ(o) = > >0 .

In either case QR(O) > 0. Thus, for every R e C", QR(O) >0. Let
Re C' be such that 0<D, <l 1e€l, and 1§i gi/D12 = w, State 0
is a recurrent state of the resuiting Markov chain {Yt} since

P{Yt = Q0 for some t > OIYO = 0} 1is equal to one. However, the mean
recurrence time of state 0 is 1 + Ei gi/D12 = o; hence, O is a null
recurrent state. From Markov chainiigeory (see Chung [4]) it follows

that all states are null recurrent states. Then, for any state 10,

i
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i =l
* ™ 1=0 t=1 1=1 +1
i
0
<woz Um = ZP(Y=1§Y-O]
i=0 T» =
o 1 T
+w, lm Y =— Y P(Y, =1i]Y =0)
oTow =141 *Lizp " °
L
=W 1im e——— P(Y i)Y =0}
iOT—>°°T+‘Lt=O t
&j
] -_;wi,
o
] T
since 1i, being nuvll recurrent implies 1lim ir%éi ET P{Y -—ilY =0} =

T co
However, io is arbitrary and {wi) decreases to z;* : hence,

Qg(0) =
| The question as tc whether, under assumptions 'A, and (B), there

may exist a rule R*¥ € C - ' such that QRfil‘ «jQR(i) for all

R € C' remains to be answered.

b Swi’ficient Conditions

In this section we arrive at sufficient conditions for the existence
of an optimal rule and for it to be a member of C". Our conditions are
motivated by the policy improvement procedure and our proof follows that

of Iglehart [10]. An alternative proof of the same (slightly stronger)

I
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re<ult appears, as well as an appilcation of the resuits of this paper,

in Derman and Liebermen [7]. The conditions are summarized in

Theorem 1. If Conditions (A) and {B) hoid and if there exists a bounded

set of numbers (g, VJ}: J ¢ 1, satisfying

(1) g+v, = min {?1k + J%& qu(k)vJ}', L,

then there exists an R¥ ¢ C" such that for any 1 and evexry R e C

g8 = Qpul(1) < Qpl1) -

R* 1is the rule which, for each i, prescribes the decision that minimizes

the right side of (1).

Proof: Let ki’ i € T, denote the decision that minimizes the right
side of (1) (or, if there are several minimizing decisions, let ky be

any one of them). Let R* denote the rule which prescribes decision

k, when in state 1, 1€ I. Let Pyy = qu(ki) for every 1, J e I.
Then (1) becomes
(2) g+v, =w,. + Y p..v,, 1el,

A

(t)
114’

to 1 calculated from {pijl’ and summing over 1, we get

On mueltiplying (2) by p the t-step transition probability from 1!

e S M .o Mt et e e Blaar el

e,

i

Vo
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| m—

(t) (t), (t)
g+ MZI PyrgVy = Z Pyri¥ik Z Pyry JeZI Py

t + t+1
Z p(,; ik Z pg,J )vj,i'eI.
ieI Jel

The latter equality involves an interchange of the order of summation
Justified by virtue of the assumption that the sequence {VJ} is
bounded. On averaging over t in (3) and canceling in the limit, we

get

(%) limT Z ) PS:)L 1k

T tOiI

153
]

Q,R*(i') , it eI,

Thus, g 1is the expected average cost per unit time under R¥*. We now
show that R* is optimal. Let gn(i), n=20,1 ... satisfy

(5) go(i) =minwv, , ielI
k

Gra(0) = mn fu, o I ayWe @}, 1ex;

L

that is, gn(i) denotes the total expected cost incurred over the
periods 0, 1, ... , n operating optimally. Because cf assumption (A) »
gn( 1) 1s well defined. We shall show that there exists an M satis-

fying

(6) ng+vi-MSgn(i)5ng+vi+M, i1erlI




for n=0,1, 2, oo . For n=0 and 1 (6) holds since (v and

5)

{wik] are bounded sequences. Assume (6) holds for n < N. Then by (5),

(6), and (1) we have

+ Y g (k) Ng+vJ+M>}

g .(i)fmin{w
N+1 &

min <w Zq k)v}+Ng+M
X ik jel ij J

(N+1L)g+v, +M,

i ieI,

fi

the right inequality of (6). The left follows in the same way. Thus
(6) holds.
Let R be any Re C and let hn(i) be the total expected cost

is the

incurred over the periods 0, 1, ... , under R. Since gn(i)

result of an optimal rule for those periods, we have, using (6), that
) A
(1) g (1)

lim inf > lim =

n— o n—

=g, 1el.

h (1)

This proves the theorem since QR(].) > lim inf

n—o ®

We point out the following

Corollary: Under the conditions of theorem 1, lgn( 1) - ng| <2 M

for every n.

10
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4, TImprovement and Convergence

This section is devoted to seeking conditions under which a policy
improvement procedure can be effectively used. A condition that we
shall need to assume is

(C) For every R € C" the resulting Markov chain is positive

recurrent; i.e., all states belong to one communicating class
and are positive recurrent states (see Chung [4]).
Let R (make decision k, at state i) be any rule in C". Suppose

(D) There exists a bounded set of numbers {g, vj}, J eI,

satisfying (2).

Let R' (make decision k! at state i) be defined as follows: Set

i
ki = ki for each 1 such that
(7) W + Y q,.(k)v =min{w + Y q..(k )v}
iki jer 1377177 X ik jeI 130717073

holds. Assume the set of states such that (7) does not hold is non-
empty (otherwise the conditions of theorem 1 would be satisfied). For
at least one state i not satisfying (7) let k! be such that
(8) W + Y q, (k)v, <w + Y q,(K)v, .

iki, jeI 13V ik1 jeT ij J
Denote by I' +the set of states where (7) does not hold and for which
k! 1s chosen to satisfy (8). For all states i ¢ I', let k! = k..

i 1 i

(Here, we allow that ki = k, even through (7) does not hold. Later

we shall not allow this.) We can assert

.
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Lemma 1. If (A}, (B), (C) and (D) hold, then for any initial state i,

Qe (1) < Qp(1) .

Proof: Let Pyj = qij(kﬂi) (i, Je1). Let « i € I, be the differ-

i’
ence between the right side and left side of (8); thus, €, >0 if
ieT and e =0 if i ¢ I, Forany 1leI and t we get, using

(2), that
(t)_ _ (t) , .
g Py €4 7 L Py 18 F vy - (g ; ) pijvj)}

_ (t), _ v (t) _ (t+1)
=8t igI P13 Vs T L Py Vik,, JEI Piy Vi

On averaging over t =0, ... , T and letting T —» o we get (since

the e, 's are also bounded)

T
1« (%) 1 (t)
(9) Z €. lim ——e— Z p.. =g = 1im ———— Z s W,
el Trhe T Tl Toew T V1420 g1 11 iky,

g - Q‘Rl(l) °

T
However, under assumption (C), 1lim - ) p(t) >0 for every
T+ 1 1i
T o t=0
i € I. Therefore, the left side of (9) is strictly positive since at

least one € is positive. Thus

i

QR'(1)<8=QR(1) » 1el,

and the lemma is proved.

12
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We remark that the amount of improvement obtained in changing from

R to R' is precisely Z: ﬂiei where {ﬂi}, i € T, are the steady
iel
state probabilities of the Markov chain with transition probabilities
:Pij]o
We have directly

Theorem 2: Under the conditions of lemma 1, if R e C" is optimal

over C", then it is optimal over C.

Proof: If R is optimal over C", then I' must be empty by lemma 1.
Therefore (1) holds and theorem 1 applies.
We shall make use of a further condition.
(E) For every R € C" there exists a set of real numbers
[gR, v?], J € 1 satisfying condition (D). The numbers
(gR, vg}, are bounded uniformly over j e I, R e C",

We then have the following existence

Theorem 3: Suppose (4), (B), (C), (D) and (E) hold, then there exists

a rule R* ¢ C" which is optimal over C.

Proof: For any R e C" 1let w and q,,(R) denote the values W
iR 13

and qu(k) under R for each 1 € I. Then with this notation (2)

ik

becomes
R, .R_ R

(lo) g +vi-wiR+ Z qu(R)V ’ iel.

Jel
Let g* be the greatest lower bound of all gR, ReC". Let [Rn],

R
n=1 ... be a sequence of rules in C" such that 1limg 0o g+,
n— ®
13




e

Because of the uniform boundedrness condition on {v?) and because C"

is compact (Tychonov's theorem) there exists a convergent subsequence
Rn

{Rn }, v=1, 2, ... such that 1lim vj V- vg, J € I, where {vg]
v V- ©
is a bounded sequence. Let R¥ = 1lim R (Note: Since k, <, {Rn }
V= o v v

converges to R* means that qij(Rn ) = a (R*) for sufficiently large
v

v). On letting v -, from (10) we get

J

an n,;
(11) g+ vk = lim4g "+ v, }
Vo
R
oy
= limqw,. + > qu(Rn )v:j }
V— @ n, JeI v
=Wt 2 q (R¥)VE, 1eI.
twr T L Yy 3
R
(The fact that 1im ) g, (R )v Ve ¥ qid(R*)vg is easily shown.)
v o jJel J v J JeI
Thus {g*, vg], J €I 1is a bounded set of numbers satisfying (2) (or
* *
(10)) for R = R* ¢ C". That is, g% = gR , v3'= v? , J eI, Now

suppose (1) does not hold when R¥* is the rule. Then from lemma 1 an
improvement is possible, contradicting the fact that g* 1s the greatest
lower bound of all gR, R e C". Thus (1) must hold and by theorem 1,
R* 1ig optimal over C.

Since the policy improvement procedure [9] involves solutions to
(1) and (2) and converges to an optimal rule in the finite state case,
it is of interest to provide a procedure and conditions for convergence
in the denumersble state case. let R (make decision ki at state i,

i€ I) be any rule in C". We define an iteration of the policy

14
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improvement procedure for denumerable states as the transformation from

R to R' where the decisions {k;] of R' are decisions for which
{%ik + é& qij(k)vi} are minimized. The term "improvement" is justified
by'lemmg 1. Note, that in our definition we now insist upon all possible
improvements to be made in each iteration. The policy improvement pro-
cedure 1s a sequence of policy improvement iterations starting from any
initial rule R e C". Before stating conditions under which a sequence
of policy improvement iterations converges to an optimal rule we prove
another lemma.

. 1 I .
Let niJ(R) = lim g > P[Yi = J,Yo =1}, i, J € I, for each

To o t=0

R € C'. We shall utilize the following condition:

(F) For every J e I, inf (r) >o0.
ReC)iel

For any R ¢ C", let

ﬂid

§

R ( . Z R R
€ = |w + g, .(k )v>-<w + Y g (k')V>
1 thy T g Y 1y e T

R, R . 1R
g + vy - (wik'i Zqij(ki)v,j> , eI,

where '{ki}, i € I, are the decisions of R and [ki], i e I, are the

decisions obtained from R by a policy improvement iteration.

Lemma 2: Assume conditions (A), (B), (C), (D), (E), and (F). Let

Rl = Re C" be srbitrary, and (Rn} be a sequence of policy improve-

R
ment iterations; then, for each 1 € I, lim ein = 0.
n— %

15
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Proof: Under assumption (C), for each n =1, 2, ... ﬂij(Rn) = ni(Rn),
the steady-state probability of state 1 under rule Rn. From the

remark following lemma 1 we can write, for each n,

Rn Rn+l ’ Rn
g e = L m(R)e
iel
Rn
Since the left side tends to zero as n -»» ( 1im g exists since
Rn n—

{g '} 1is a decreasing sequence), so must the right side. However, since
R ) R
e,” 20, it follows from condition (F) that lim ein =0, 1¢lI.

We can now state

Theorem 4: If conditions (A), (B), (C), (D), (E) and (F) hold, then

given any Rl =R ¢ C", the policy improvement procedure converges to a

rule R* ¢ C which is optimal over C.

Proof: Let {Rn} be any sequence of rules obtained under the policy
improvement procedure with Rl € C" arbitrary. From compactness

considerations it is possible to choose a subsequence of rules {Rn 1,

v=1,2, ... suchthat limg ' =g¥ limv, =v*i*(ie 1),

lim e, V=0 (1 € I), and 1im R_ = R*, For any R_, equation (10)
n n

V= o V— v Y

holds. On letting v - x we get

Fn,,
(12) g%+ v¥=wo, + lin Y qu(Rn )VJ , 1e1I.
v o Jel v

For a given 1, for v large enough, q,,.,(R ) = q,,(R*); thus, from
13 n, 13

%
(12) we get that g* = gR* and v} = VI:: , 1€ I. Clearly,
16
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e o ot

e

n
\ . v
(13) g* + v} > lim sup mlj{.n {wik + Zqij(k)v,j } ,1eI.

Vo ©

However, by definition of e?, we have, for each v,

R R
n n

R
n n
(14) g V*l*vivfml:tn{wik+Zqi‘j(k)v‘j v}+€iv, ieI.

Therefore, from (13) end (14), it follows, using lemma 2, that

R
n
(1) errvi- dmata{ey v 5o 00, teT.

voo k jer 19

However, for each 1 € I and k

V— @

n
lim min {w + ¥ q (kv "}
ik T o MY

V=

R
n
< lim<w,. + Y q, (kv V}
ik jet 13 3 ’
so that from (15)

R

n

v

g+ v¥<min lm<w, + ) q, . (k)v }
1=k yow UK 4 10

=min{w + Y q (k)v-*}.
x Lk e W

But, for k chosen in accordance with rule R¥*, equality holds; hence,

(1) must hold and theorem 1 applies. This proves the theorem.

17




|
E
{

[1]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

[10]

REFERENCES

Blackwell, David (1962). Discrete dynamic programming. Ann. Math.
Statist. 33, 719-726.

Blackwell, David (1964). Positive bounded dynamic programming.
(Mimeographed)

Blackvell, David (1965). Discounted dynamic programming. Ann.

Math. Statist. 36, 226-235.

Chung, Kai Lai (1960). Markov chains with stationary transition

probabilities, Springer, Berlin.

Derman, Cyrus (1962). On sequential decisions and Markov chains.

Management Sci. 9, 16-24.

Derman, Cyrus (1965). Markovian Sequential Control Processes--

Denumerable State Space. J. Math. Anal. Appi., 10, 295-302.

Derman, Cyrus and Lieberman, Geralid J. On Machine Setting and
Maintenance Problems (in preparation)
Gillette, Dean (1957). Stochastic games with zero stop proba-

bilities. Ann. Math. Studies, 39, Vol III, 179-187.

Howard, Ronald (1960). Dynamic programming and Markov processes.

John Wiley, New York.
Iglehart, Donald {1963). Dynamic programming and stationary
analysis of inventory problems, chapter 1 of Multi-stage

Inventory Models and Techniques (Edited by H. Scarf,

D. Gilford, and M. Shelly) Stanford U. Press, Stanford,

Calif.
18

AR Y ey

Joa———
S—



[11]

[12]

[13]

[14]

ey,

Meitra, Ashok (1964). Dynamic Programming for Countable State

Systems, Doctoral thesis, U. of California, Berkeley.
Manne, Alan (1960). Linear programming and sequential decisions,

Management Sci., 6, 259-267.

Strauch, Ralph E. (1965). Negative Dynamic Programming. Doctoral

thesis, U. of California, Berkeley.
Taylor, Howard. Markovian Sequential Replacement Processes (to

appear in Ann. Math. Stat.).

19




Rt 2 1Y iy

UNCLASSIFIED
% Security Classification
DOCUMENT CONTROL DATA - R&D
(Seourity clasailication of title, body of ab t ond indexing tation must be entered when ll_n oversl! report is classilied)

i 1. ORIGINATING ACTIVITY (Corporate suthor) 7. REPORT SECURITY C LABSIPICATION
i Stanford University . Unclassiiied

Department of Statistics 25 eroUP

Stanford, California

i 3. REPORYT TiTLE

Denumerable State Markovian Decision Processes--Aversge Cost Criterion

[« ORSCRIPTIVE NOTES (Type of report end inchusive dates)

Technical Report, February 1966
8. AUTHOR(S) /Laat name. firet neme, initial)

; Derman, Cyrus
‘ 6. REPORT DATE 76. TOTAL NO. OF PAGES 7. nO. OF REPS
| 28 February 1966 19 1

$48. CONTRACY OR GRANT NO. 96 ORIGINATOR'S REPORT NUMBEN(S)
. Nonr-225(53) (FR) Technical Report No. 86
{ b PROJECT NO.
: NR 042-002

€. 0. grun u:Juollv NO(S) (Any 2ther numbere et may be aselgned

i onr-225(53) (FB1) . e
3 d.

10. AVAILABILITY/LIMITATION NOTICES

(. Jistribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Logistics and Mathematical Statistics Branch
Office of Naval Research

Washington, D. C. 20360

13. ABSTRACT

Markovian decision processes with a countable number of states and average
cost criterion are considered. Counterexamples are presented to show that optimal
control rules need not exist or if they do exist they may not be of a deterministic]”
stationary Markovian charac.er, Conditions are presented under vwhich optimal rules
do exist and are stationary deterministic. Further conditions are presented under
which a policy improvement procedure ccnverges to an optimal rule.

l DD %2 1473 “ i UNCLASSIFIED
|

IL-4




UNCLASSIFIED

Security Classification

14
KIY WORDS

LINK A LINK 8 LiINK C

ROLZ WwT ROLEK wY ROLEK wY

Markovian sequential control processes
Markovian decision processes
discrete dynamic programming

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractoe, grantee, Department of De-
fense activity or other organization (corporate suthor) issuing
the report.

2a. REPORT SECUNTY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
“‘Restricted Data’ is included Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automstic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all

" capital Jetters. Titles in all cases should be unclassified,
If a meaningful title cannot be selected without clessifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPT.VE NOTES: If eppropriste, enter the type of
report, e.g., interim, progress, summary, annual, or final. -
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initia'.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal paginstion procedures, i.e., enter the
number of pages containing information

76. NUMBER OF REFERENCES Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity, This number must
be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Eater any lim

itations on further dissemination of the report, other than those,

DD .24, 1473 (BACK)

INSTRUCTIONS

hnp;aed by security classification, using standard statements
such as:

(1) '*Qualified requesters may obtain copies of this
report from DDC.*’

(2) ‘'Foreign announcement and dissemination of this
teport by DDC is not authorized.”’

(3) ‘U. 8. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) ‘'U. S. military agencies may obtaina copies of this
report directly from DDC. Other qualified users
shall request through

(5) ‘**All distribution of this report is controlled Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Use for additional explane-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstrect giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (T3). (S), (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 wonrds.

14. KEY WORDS: Key words are techaically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected 80 that no security classification is required. ldenti-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of techaical coa-
text. The asaignment of links, rales, and weights is optional.

S

UNCLASSIFIED

Security Classification

== Do, nr-w-.“\,

)
o

e | ] o} frwd Lnmem

R N

L
]

-

Mvmﬁ. §onzood

{

B Satlreed

- .«




